Supporting Text

Strain Construction. All gene constructs were transformed into the genome by PCR-based gene integration, and were confirmed by PCR and Western blot (1). CFP was inserted in between residues 10 and 11 of Gpa1p (HIS5-marked vector) and YFP was inserted in between residues 104 and 105 of Ste18p (kanamycin-marked vector) by PCR-based gene integration of RJD415 to create the FRET strain TMY101. The singly labeled strains TMY102 (*CFP-GPA1*) and TMY103 (*STE18-YFP*) contained only one of the two FRET probes. The $sst2\Delta$ strain TMY91 was constructed by PCR-based gene disruption of the strain RJD360. In the strain TMY92 ($ste2^{300\Delta}$), we inserted a stop codon after amino acid 300 in the STE2 gene of RJD415 by using PCR-based gene insertion. We crossed TMY91 with TMY101 to place the $sst2\Delta$ mutation into the FRET background (TMY111). We crossed TMY92 with TMY101 to place the $ste2^{300\Delta}$ mutation into the FRET background (TMY112). One of the sporulation products from the TMY91 × TMY101 cross, TMY113, contained the wild-type genes for both SST2 and BAR1, along with CFP-GPA1 and STE18-YFP. See Table 2 for genotypes of strains.

Ligand-Binding and Receptor Endocytosis Assays. Ligand-binding assays were performed with 35 S-labeled α -factor and whole cells in YPAD medium (pH 6.4) treated with 10 mM NaN₃ and 10 mM NaF (2). The α -factor internalization assays were performed essentially as described (3).

Additional Notes on FRET Quantification. The FRET efficiencies in the absence of α -factor, E_0 (t = 0), and when G protein activation was at its maximum, E_{max} (t = 30s), were

$$E_0 = 1 - \frac{F_{DA}^0}{F_D^0}$$
 $E_{\text{max}} = 1 - \frac{F_{DA}^{\text{max}}}{F_D^{\text{max}}}$,

determined by using the following formulas:

where F_{DA} is the fluorescence emission of the donor CFP-Gpa1p in the presence of the FRET acceptor Ste18p-YFP, and F_D is the emission of CFP-Gpa1p alone.

For TMY111, $r_0 = 0.63$, and $r_{\text{max}} = 0.7$; for TMY112, $r_0 = 0.59$ and $r_{\text{max}} = 0.67$. We could not calculate E_0 and E_{max} for these two strains, because we did not have singly labeled CFP-Gpa1p versions of the strains to determine F_{D} .

Background subtraction (subtracting the intrinsic background fluorescence of yeast cells) was not necessary for the raw 475/530 ratios, r_i , because we were quantitating changes in r_i . Background subtraction was performed on the representative spectra in Fig. 2 and for the determination of E_0 and E_{max} .

The fluorescence emission of CFP-Gpa1p alone and Ste18p-YFP alone did not change significantly during the first 10 min of the pheromone response.

Additional Notes on Parameter Estimation. Siekhaus and Drubin (4) have recently demonstrated that $sst2\Delta$ cells exhibit spontaneous receptor-independent G protein activation. For the modeling described above, we have assumed that the $sst2\Delta$ cells in the absence of pheromone are either fully activated in terms of G protein signaling or completely inactive. Only the inactive class of cells responds to α -factor; the active class contributes to a higher pretreatment baseline level of G protein activation.

- 1. Wach, A. (1996) Yeast 12, 259–265.
- 2. Blumer, K. J. & Thorner, J. (1990) Proc. Natl. Acad. Sci. USA 87, 4363–4367.
- 3. Hicke, L. & Riezmann, H. (1996) Cell 84, 277-287.
- 4. Siekhaus, D. E. & Drubin, D. G. (2003) Nat. Cell Biol. 5, 231–235.